Effects of Prosthesis Mass on Hip Energetics, Prosthetic Knee Torque, and Prosthetic Knee Stiffness and Damping Parameters Required for Transfemoral Amputees to Walk

نویسندگان

  • Amos G. Winter
  • Yashraj S. Narang
چکیده

We quantify how the hip energetics and knee torque required for an above-knee prosthesis user to walk with the kinematics of able-bodied humans vary with the inertial properties of the prosthesis. We also select and optimize passive mechanical components for a prosthetic knee to accurately reproduce the required knee torque. Previous theoretical studies have typically investigated the effects of prosthesis inertial properties on energetic parameters by modifying both mass and mass distribution of the prosthesis and computing kinetic and energetic parameters only during swing. Using inverse dynamics, we determined the effects of independently modifying mass and mass distribution of the prosthesis, and we computed parameters during both stance and swing. Results showed that reducing prosthesis mass significantly affected hip energetics, whereas reducing mass distribution did not. Reducing prosthesis mass to 25% of the mass of a physiological leg decreased peak stance hip power by 26%, average swing hip power by 74%, and absolute hip work over the gait cycle by 22%. Previous studies have also typically optimized prosthetic knee components to reproduce the knee torque generated by able-bodied humans walking with normative kinematics. However, because the prosthetic leg of an above-knee prosthesis user weighs significantly less than a physiological leg, the knee torque required for above-knee prosthesis users to walk with these kinematics may be significantly different. Again using inverse dynamics, it was found that changes in prosthesis mass and mass distribution significantly affected this required torque. Reducing the mass of the prosthesis to 25% of the mass of the physiological leg increased peak stance torque by 43% and decreased peak swing torque by 76%. The knee power required for an above-knee prosthesis user to walk with the kinematics of able-bodied humans was analyzed to select passive mechanical components for the prosthetic knee. The coefficients of the components were then optimized to replicate the torque required to walk with the kinematics of able-bodied humans. A prosthetic knee containing a single linear spring and two constant-force dampers was found to accurately replicate the targeted torque (R 2 =0.90 for a typical prosthesis). Optimal spring coefficients were found to be relatively insensitive to mass alterations of the prosthetic leg, but optimal damping coefficients were sensitive. In particular, as the masses of the segments of the prosthetic leg were altered between 25% and 100% of ablebodied values, the optimal damping coefficient of the second damper varied by 330%, with foot mass alterations having the greatest effect on its value. INTRODUCTION A fundamental goal of the design of lower-limb prostheses is to enable lower-limb amputees to walk with the gait of able-bodied humans. However, the gait of amputees using existing prostheses differs from the gait of able-bodied humans in two major ways. First, prosthesis users typically expend significantly more metabolic energy than able-bodied humans during walking [1-4]. Second, prosthesis users typically do not walk with the kinematics of able-bodied humans [5-7]. Designers have taken specific design approaches to resolve each of these issues, but these approaches have their respective limitations. Designers have primarily attempted to reduce the metabolic energy expenditure of prosthesis users by altering the inertial properties of prostheses (e.g., reducing mass) [8]. Researchers have evaluated this design approach by conducting experimental and theoretical studies to measure or

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Prosthesis Mass on Hip Energetics, Prosthetic Knee Torque, and Prosthetic Knee Stiffness and Damping Parameters Required for Transfemoral Amputees to Walk with Normative Kinematics

We quantify how the hip energetics and knee torque required for an above-knee prosthesis user to walk with the kinematics of able-bodied humans vary with the inertial properties of the prosthesis. We also select and optimize passive mechanical components for a prosthetic knee to accurately reproduce the required knee torque. Previous theoretical studies have typically investigated the effects o...

متن کامل

The Effects of the Inertial Properties of Above-Knee Prostheses on Optimal Stiffness, Damping, and Engagement Parameters of Passive Prosthetic Knees.

Our research aims to design low-cost, high-performance, passive prosthetic knees for developing countries. In this study, we determine optimal stiffness, damping, and engagement parameters for a low-cost, passive prosthetic knee that consists of simple mechanical elements and may enable users to walk with the normative kinematics of able-bodied humans. Knee joint power was analyzed to divide ga...

متن کامل

Assessing the Relative Contributions of Active Ankle and Knee Assistance to the Walking Mechanics of Transfemoral Amputees Using a Powered Prosthesis

Powered knee-ankle prostheses are capable of providing net-positive mechanical energy to amputees. Yet, there are limitless ways to deliver this energy throughout the gait cycle. It remains largely unknown how different combinations of active knee and ankle assistance affect the walking mechanics of transfemoral amputees. This study assessed the relative contributions of stance phase knee swing...

متن کامل

Effect of Asymmetric Knee Height on Gait Asymmetry for Unilateral Transfemoral Amputees

Transfemoral prostheses have traditionally sought to emulate symmetry in their designs. Using a symmetric prosthesis for a physically asymmetric unilateral transfemoral amputee typically causes asymmetric gait patterns. This research study investigates the effects of prostheses with lower knee heights than the intact knee and a pilot study of the combined effects of adding distal mass with lowe...

متن کامل

Feature User-adaptivecontrolof a magnetorheological prosthetic knee

A magnetorheological knee prosthesis is presented that automatically adapts knee damping to the gait of the amputee using only local sensing of knee force, torque, and position. To assess the clinical effects of the user-adaptive knee prosthesis, kinematic gait data were collected on four unilateral trans-femoral amputees. Using the user-adaptive knee and a conventional, non-adaptive knee, gait...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014